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Abstract
Background: Significant progress has been made towards the clinical application of human-machine interfaces (HMIs) 
based on electromyographic (EMG) pattern recognition for various rehabilitation purposes. Making this technology 
practical and available to patients with motor deficits requires overcoming real-world challenges, such as physical and 
physiological changes, that result in variations in EMG signals and systems that are unreliable for long-term use. In this 
study, we aimed to address these challenges by (1) investigating the stability of time-domain EMG features during 
changes in the EMG signals and (2) identifying the feature sets that would provide the most robust EMG pattern 
recognition.

Methods: Variations in EMG signals were introduced during physical experiments. We identified three disturbances 
that commonly affect EMG signals: EMG electrode location shift, variation in muscle contraction effort, and muscle 
fatigue. The impact of these disturbances on individual features and combined feature sets was quantified by changes 
in classification performance. The robustness of feature sets was evaluated by a stability index developed in this study.

Results: Muscle fatigue had the smallest effect on the studied EMG features, while electrode location shift and varying 
effort level significantly reduced the classification accuracy for most of the features. Under these disturbances, the most 
stable EMG feature set with combination of four features produced at least 16.0% higher classification accuracy than 
the least stable set. EMG autoregression coefficients and cepstrum coefficients showed the most robust classification 
performance of all studied time-domain features.

Conclusions: Selecting appropriate EMG feature combinations can overcome the impact of the studied disturbances 
on EMG pattern classification to a certain extent; however, this simple solution is still inadequate. Stabilizing electrode 
contact locations and developing effective classifier training strategies are suggested to further improve the 
robustness of HMIs based on EMG pattern recognition.

Introduction
Electromyographic (EMG) signals represent neuromus-
cular activity and are effective biological signals for
expressing movement intent for external device control.
EMG-based human-machine interfaces (HMIs) have
been widely applied in biomedicine, industry, and aero-
space. In the field of rehabilitation engineering, EMG sig-
nals are one of the major neural control sources for
powered upper-limb prostheses [1,2], powered orthoses/
exoskeletons [3,4], rehabilitation robots [5,6], robotic
wheelchairs [7], and assistive computers [8].

Various EMG signal processing algorithms have been
used to decipher movement intent. Simple HMI systems
employ methods such as computing root mean square
(RMS) to estimate the EMG magnitude. When the EMG
magnitude is above a set value, the user's movement
intent is identified, which triggers the HMI system to
drive an external device. Such algorithms have been used
in robotic devices [5-7] and upper-limb prostheses [9],
but with limited function. For example, EMG signals
from a residual pair of agonist/antagonist muscles were
used to proportionally drive a prosthetic joint [9]. Each
EMG signal controlled motor rotation in one direction.
Although such prostheses have been widely used in clin-
ics, they do not provide sufficient information to reliably
control more than one degree of freedom. In addition,
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users must be trained to avoid co-contracting the two
muscles in order to drive the artificial joints smoothly.

EMG pattern recognition is an advanced, intelligent
signal processing technology and has been proposed as a
potential method for reliable user intent classification
[8,10]. Beyond signal magnitude, a typical pattern recog-
nition algorithm extracts a set of features that character-
ize the acquired EMG signals and then classifies the
user's intended movement for external device control.
The benefit of pattern recognition algorithms are that
they can increase the neural information extracted from
EMG signals using a small number of monitored muscles
and allow intuitive control of external devices. Previous
studies have evaluated the ability of various EMG features
and classifiers to recognize user intent [6,8,11-14]. These
studies were mainly done on able-bodied subjects or on
subjects with transradial amputations. The results dem-
onstrated over 90% classification accuracy for either
offline or online testing. The comparison of classification
accuracies resulting from utilization of different types of
classifiers and EMG features demonstrated that the type
of classifier used does not significantly affect the classifi-
cation performance, while the choice of features has a sig-
nificant impact on classification performance [11-13].

Although these previous studies reported high classifi-
cation accuracies in single-session experiments con-
ducted in research laboratories, the robustness over time
of HMIs based on EMG pattern recognition has rarely
been evaluated [15]. Our research group attempted to
implement HMIs based on EMG pattern recognition in
clinics. In our experience, the performance of these sys-
tems can degrade within hours after initial classifier
training [16]. This significantly challenges the clinical
application of such systems. This performance degrada-
tion could be the result of EMG signal variations caused
by undesired disturbances. One simple solution is to
identify EMG features that are not only insensitive to the
changes in EMG signals caused by these disturbances,
but also maintain a high level of class separability. Zard-
oshti-Kermani et al. [12] defined high-quality features as
those that produce maximum class separability, robust-
ness, and less computational complexity. In their study,
robustness of features was tested by a repeat measure-
ment of the classifier's performance with artificially
added white noise. However, the factors affecting EMG
pattern recognition the most may be more complex than
additional noise and might be due to physical and physio-
logical changes that directly interfere with the EMG sig-
nal sources.

In this study, we investigated the general impact of
EMG signal variations on 11 commonly used EMG fea-
tures and identified the most robust EMG feature sets for
reliable EMG pattern recognition. To keep the computa-
tional complexity low, our investigation focused only on

time-domain (TD) features that do not require additional
signal transformation. Additionally, instead of using com-
puter simulation, we collected EMG data from human
subjects with three changing physical or physiological
conditions: EMG electrode location change (physical
change of electrodes), muscle contraction effort (cogni-
tive variations in users), and muscle fatigue (electrophysi-
ological changes in users). These three factors are
common disturbances of EMG signal sources in EMG
pattern recognition.

Changing electrode location: Unlike the self-adhesive
EMG electrodes used in a laboratory, the EMG elec-
trodes used in prostheses or exoskeletons are usually
metal contacts mounted on the inside wall of a socket
or robotic limb. Sliding motion between the rigid
structure and the user's limb causes shifts in the elec-
trode contact location and therefore affects the
recorded EMG signals [17].
Variability of muscle contraction effort: Pattern recog-
nition is composed of two procedures: training and
testing. During the training procedure, the classifier
must "learn" the patterns of EMG signals generated
when the user performs different tasks. The EMG
classifier can then be used to identify user intent.
However, maintaining the same effort of muscle con-
traction while controlling an external device as that
used when training the classifier could be difficult. It
is well known that the muscle contraction force deter-
mines the number and type of recruited muscle
fibers, thus directly affecting the magnitude and fre-
quency of surface EMG signals [18].
Muscle fatigue: Muscle fatigue is another factor that
influences the EMG signal [19,20]. Muscle fatigue is
common for users with neuromotor deficits, even
with the assistance of robots or exoskeletons. Ampu-
tee users also experienced fatigue after several hours
of myoelectric prosthesis use, mostly due to the sus-
tained muscle contraction.

The outcomes of this study could inform the design of
more robust and clinically viable EMG pattern recogni-
tion systems for specific rehabilitation applications and
eventually benefit individuals with motor deficits.

Methods
Participants and Experimental Protocol
This study was approved by the Institutional Review
Board at Northwestern University. Eight able-bodied sub-
jects (four male and four female, 35 ± 15 years in age) par-
ticipated in the study and provided written and informed
consent.

Two four-by-three grids of monopolar surface elec-
trodes were placed on each subject, one over the biceps
muscle and one over the triceps muscle (Figure 1A). Each
monopole Ag/AgCl electrode (TMS International B.V.,
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the Netherlands) was circular with a diameter of 10 mm.
The center-to-center distance between two poles was 15
mm. Before electrode placement, the skin was shaved,
lightly abraded, and cleaned with alcohol. Conductive gel
was applied to each monopole. The center of the elec-
trode grids were positioned over the anatomical locations
described by Delagi and Perotto [21]. A reference elec-
trode was placed on the abdomen of each subject. The
subjects were asked to perform four types of isometric
contractions with their preferred arm: elbow flexion,
elbow extension, forearm pronation, and forearm supina-
tion. They were also asked to complete resting trials. An
experimental apparatus (Figure 1B) was constructed to
maintain a consistent arm posture and normalize the
level of effort exerted by all subjects. Subjects sat com-
fortably in front of a desk with their elbow resting on an
armrest, such that their elbow joint was at a right angle
and their hand was level with the top of the desk. Their
hand gripped the handle of the experimental apparatus.
Elbow flexion and extension were performed by pressing
the handle upward or downward against force sensors
within the upper or lower enclosure of the apparatus,
respectively. Pronation and supination were achieved by
gripping a handle connected to a torque wrench and
rotating the forearm against the resistance of the device
while maintaining proper arm posture. No effort was
required for the subjects to maintain their nominal pos-
ture in the experimental apparatus.

To study the effect of different levels of muscle contrac-
tion effort on classifier performance, we defined two dif-
ferent effort levels--high and low. At the beginning of
each experiment, subjects were asked to perform each of
the four actions at their own pace and maintain maximal
voluntary contractile force (MVC) for five seconds. Low
and high effort levels were defined as 25% and 65% of
MVC, respectively, in congruence with effort protocols
seen in literature [20,22]. Although 25% to 65% effort lev-
els are high compared to the effort required by able-bod-
ied subjects to naturally move a joint without load,
powered prostheses, wheelchairs, or exoskeletons are
usually driven by EMG signal amplitudes (or muscle con-
traction effort), and therefore patients with motor deficits
use these effort levels to drive these machines. Once
MVC was established, subjects were asked to perform
flexion, extension, supination, or pronation at their own
pace and to hold the contraction at the defined effort
level for 5 s. Subjects were given feedback on their effort
level via either the force sensors or the torque wrench
(Figure 1B).

In order to study the effect of muscle fatigue on EMG
features, we instructed the subjects to perform isometric
contractions that induced short-term muscle fatigue.
Subjects were asked to maintain an isometric contraction
of the respective muscle at low effort (25% MVC) for 90
seconds [23,24]. All subjects verbally reported muscle
soreness and presented some difficulties in maintaining
the required amount of constant force at the end of this
session. The EMG signals measured after this 90 seconds
contraction were from fatigued muscles.

The experiment was divided into ten trials--a baseline/
rest trial and nine action trials. During the first trial, the
subjects remained relaxed for 2 min. while baseline EMG
activity was recorded. Each of the remaining trials con-
sisted of 10 isometric contractions, either 5 flexions and 5
extensions, or 5 pronations and 5 supinations. The type
of action and desired effort level were specified randomly
within each trial. For each action, subjects were
instructed to maintain a target level of contraction--
either low or high effort, depending on the trial--for 5 s,
with 5 s breaks between low effort contractions and 1.5
min. breaks between high effort contractions to avoid
muscle fatigue [19,23]. During the first seven of the nine
action trials the subjects were instructed to perform iso-
metric contractions at either low or high levels of effort
while the muscles remained unfatigued. The last two of
the nine action trials required the subjects to perform
only low effort actions while the muscles were in a
fatigued state. A rest was allowed between trials.

EMG Data Collection and Pre-Processing
The Refa System (TMS International B.V., the Nether-
lands) was used to acquire the EMG signals. The monop-

Figure 1 Experimental apparatus and the placement of elec-
trodes. (A) Electrode grids were placed on the biceps and triceps mus-
cles of the participants. Single differential EMG signals were obtained 
by subtracting data from two longitudinally neighboring electrodes 
(e.g. green box). (B) Subjects grip a handle that is pressed upward or 
downward against the enclosure of the apparatus to achieve flexion or 
extension, respectively. Force sensors encased in the upper and lower 
enclosure provide force feedback. To achieve pronation or supination, 
subjects twist a handle. The handle is attached to a torque wrench pro-
viding the subjects with torque feedback.
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olar analog signals were low-pass filtered with a 625 Hz
cut-off frequency and pre-amplified with the gain of 60
dB. The common mode was removed by subtracting the
average of the connected monopole signals. The EMG
signals were digitally sampled at 2500 Hz and band-pass
filtered from 15 to 450 Hz using a digital, eighth-order
Butterworth filter. The data coinciding with muscle con-
tractions were manually segmented and concatenated
based on the type of intended movement [25]. Manual
data segmentation allowed us to select transient EMG
signals in the initial movement state, compared to auto-
matic method. Note that the data segmentation was not
required in real-time EMG pattern recognition. Single
differential EMG signal (bipolar) recordings from longi-
tudinally neighboring electrodes were subtracted from
each other (see, e.g., Figure 1A). Single differential EMG
signals are referred to below as EMG signal channels.

Investigation of Time-Domain Features
Eleven frequently suggested time-domain features with
high computational efficiency [10,12,15,26-28] for real-
time EMG pattern recognition were assessed. These fea-
tures were extracted within an N-sample analysis time
window.
Mean Absolute Value (mAV)
This feature is the mean absolute value of signal x in an
analysis time window with N samples. xk is the kth sample
in this analysis window.

Zero Crossings (ZC)
ZC is the number of times signal x crosses zero within an
analysis window; it is a simple measure associated with
the frequency of the signal. To avoid signal crossing
counts due to low-level noise, a threshold ε was included
(ε = 0.015 V) [27]. The ZC count increased by one if

Slope Sign Changes (slopeSign)
Slope sign change is related to signal frequency and is
defined as the number of times that the slope of the EMG
waveform changes sign within an analysis window. A
count threshold ε was used to reduce noise-induced
counts (ε = 0.015 V) [27]. The slopeSign count increased
by one if

Waveform Length (waveLen)
This feature provides a measure of the complexity of the
signal. It is defined as the cumulative length of the EMG
signal within the analysis window:

Willison Amplitude (wAmp)
This feature is defined as the amount of times that the
change in EMG signal amplitude exceeds a threshold; it is
an indicator of the firing of motor unit action potentials
and is thus a surrogate metric for the level of muscle con-
traction [12]. A threshold between 50 and 100 mV has
been reported in the literature [12]. In this study, the
threshold ε was defined for each subject as the EMG sig-
nal value that had a 50% probability of occurrence as
defined by a computed cumulative distribution function
for each type of intended movement:

where f(x) = {1 if x > ε; 0 otherwise}.
Variance (var)
This feature is the measure of the EMG signal's power.

v-Order (vOrder)

This metric yields an estimation of the exerted muscle

force [12]. The optimal EMG signal processor consists of

a pre-whitening filter, a nonlinear detector, a smoothing

filter, and a re-linearizer [12]. The nonlinear detector

here is characterized by the absolute value of EMG signal

to the vth power. The applied smoothing filter is the mov-

ing average window. Therefore, this feature is defined as

, where E is the expectation operator

applied on the samples in one analysis window. One study

[12] indicates that the best value for v is 2, which leads to

the definition of the EMG v-Order feature as the same as

the square root of the var feature.
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log-Detector (logDetect)
Like the vOrder feature, this feature also provides an esti-
mate of the exerted muscle force [12]. The nonlinear
detector is characterized as log(|xk|) and the logDetect
feature is defined as

Aside from the single-value features described above,
we also studied three features with multiple dimensions.
Each of them captured one or more characteristics of the
EMG process. To be consistent, the dimensionality of
these features was constrained to nine.
EMG Histogram (emgHist)
This feature provides information about the frequency
with which the EMG signal reaches various amplitudes
[12]. For each subject, a minimum and a maximum volt-
age value of the EMG signal were determined and used as
the data range for a histogram with nine data bins. We
refer to this feature as emgHist. Although the data range
for computing emgHist was different among subjects, this
did not bias the classification result because the classifier
was adaptive to the EMG patterns for individual subjects.
Autoregression Coefficient (AR)
This feature models individual EMG signals as a linear
autoregressive time series and provides information
about the muscle's contraction state. It is defined as

where ai represents autoregressive coefficients, p is the
AR model order, and ek is the residual white noise [26].
Cepstrum coefficients (Ceps)
A cepstrum of a signal is the result of taking the Fourier
transform of the decibel spectrum as if it were a signal.
This measure provides information about the rate of
change in different frequency spectrum bands of a signal.
Cepstrum coefficients were derived from the autoregres-
sive model [15] and were computed as

where ai is the ith AR coefficient as (8), ci is the ith Ceps-
trum coefficient, i is the dimensionality of the model.
Note that computing this feature does not require a Fou-
rier transform, and this feature is still considered a time-
domain feature.

Analysis of Disturbance Impact on EMG Features
The impact of the studied disturbances on individual fea-
tures and combined features was quantified by the
change in classification performance. A simple linear dis-
criminant analysis (LDA) classifier was used because it is
a computationally efficient real-time operation and has
classification performance similar to more complex algo-
rithms [10,29,30]. One EMG channel from the biceps and
one channel from the triceps were input to the LDA clas-
sifier to identify five intended movements. For each
movement class, the concatenated signals were separated
into 150 ms analysis windows with 75 ms (50% of dura-
tion) of overlap [25]. EMG features were calculated for
each analysis window for each EMG channel. Features for
two EMG signals were concatenated into a vector and
passed to the LDA classifier. EMG features were further
separated into a training data set (to train the classifier)
and a testing data set (to evaluate the classifier). The clas-
sification performance was quantified by the overall clas-
sification accuracy (CA):

To investigate feature stability with respect to the three
studied disturbances, the training and testing data were
organized as follows:
Location Stability
The electrode shift was assumed to occur in the same
manner as a hypothetical orthotic or prosthetic socket
that could rotate clockwise/counterclockwise or slide up/
down along a user's arm. To study the effect of electrode
shift, the classifier was trained using the channel pairs
located in the center of the electrode grids on the biceps
and triceps. The classifier was then tested on data from
each of four pairs of channels with locations that would
coincide with socket shift (up/down) and socket rotation
(clockwise/counterclockwise). The extent of the shift was
constrained to the neighboring electrode pair: 15 mm
shift in each of the four directions.
Effort Stability
Based on our clinical experience, users may exert one
level of muscle contraction effort while training an EMG
classifier but use a different level of effort during real-
time testing. The effort stability was studied by training
the EMG classifier on data gathered from high-effort
actions and testing the classifier on data gathered from
low-effort actions, and vice versa. In addition, to explore
different training strategies, a classifier was also trained
and tested on data of mixed high- and low-effort actions.
EMG signals used in this analysis were taken from trials
without muscle fatigue. The central pair of electrodes
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with respect to the electrode grid was used for this analy-
sis.
Fatigue Stability
In this analysis, the classifier was trained on trials without
muscle fatigue and then tested on data corresponding to
trials with muscle fatigue. During clinical testing, muscle
fatigue emerges following prolonged usage of EMG pat-
tern recognition systems but does not typically emerge
during the training phase. The effort level was set to low,
and the central pairs of electrodes on the electrode grids
were used.

Identification of Robust Feature Sets
A robust EMG feature set should exhibit minimal impact
from undesired disturbances, yet remain sensitive to the
user's intended movements. To quantify the robustness of
feature sets under the influence of the studied distur-
bances, we defined a stability index as follows:

The numerator is the average classification accuracy
over N samples; the denominator is the scaled standard
deviation. α is a scaling factor that limits the influence of
the standard deviation on the index value. A robust fea-
ture set should produce high average classification accu-
racy under the disturbance as well as low variance across
subjects; therefore, the optimal feature set must provide
the highest index value. In this study, α was set to 0.2.
This value was determined by trial and error. It is note-
worthy that the optimal feature set was not sensitive to α
when α was within the range from 0.1 to 0.3. The most
robust EMG feature sets were determined for each of the
three studied disturbances as well as for the combination
of the three studied disturbances.

Results
Impact of Disturbances on EMG signals
The impact of electrode location shift, changing effort
level, and muscle fatigue on EMG signals recorded from
the biceps are shown in Figure 2A. Shifting the electrode
location by 15 mm caused a slight change in magnitude in
EMG signals. Significantly larger EMG amplitudes were
observed with high muscle contraction effort than with
low effort. In addition, the EMG signals recorded during
muscle fatigue demonstrated an attenuation of the higher
frequency components as compared with the EMG sig-
nals recorded without muscle fatigue. Figure 2B high-
lights this observation by comparing the power spectrum
density of the EMG signals recorded with and without

fatigue; the median frequency was reduced by 9.6 Hz
when the muscles were fatigued.

Impact of Disturbances on Individual Features
The effects of the three studied perturbations on individ-
ual features are demonstrated in Figure 3. When the elec-
trodes were not shifted, the use of emgHist resulted in the
highest mean classification accuracy (87.3%) and the use
of ZC yielded the lowest mean accuracy (49.7%). Intro-
ducing a 15 mm electrode location shift in the testing
data led to lower classification accuracy for all of the fea-
tures (Figure 3A).

Stability of individual features with respect to the level
of muscle contraction effort is demonstrated in Figure 3B.
Compared with the performance without any distur-
bances, variation in muscle contraction effort reduced
the classification accuracy of all individual features except
for ZC and slopSign. Training the classifier on high-effort
data yielded the lowest classification performance for all
features except for ZC. Training the classifier on low- and
mixed-effort data resulted in similar accuracies. Overall,
AR and Ceps were influenced the least and provided rela-
tively high classification accuracies.

Stability of individual features with respect to muscle
fatigue is demonstrated in Figure 3C. Muscle fatigue only
affected the classification accuracy of the emgHist feature.

The Impact of Disturbances on Feature Combinations
Figure 4 demonstrates the average classification accuracy
as a function of the number of combined features during
each perturbation. All three disturbances reduced the
classification performance of feature combinations.
Although muscle fatigue did not significantly affect the
classification performance of each individual feature, its
impact became visible when combinations of features
were used.

Using a feature set with two or more combined features
improved EMG pattern classification performance in all
studied conditions. In addition, using a combination of
four features began to saturate the classification perfor-
mance when tested with disturbances, which implies that
at least four features should be used to reduce the impact
of the three disturbances on the EMG pattern recognition
performance. Using features sets with five or more com-
bined features increased the computational complexity of
pattern recognition and did not result in further improve-
ment of classification accuracy when tested with muscle
fatigue and changing effort level. Therefore, the most sta-
ble feature set was identified from the combinations of
four features.

Selection of Most Stable Feature Sets
When the number of combined features was limited to
four, the feature set with the highest stability index (as in
equation 11) with respect to location shift was composed
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Figure 2 Examples of recorded EMG signals. (A) Comparison of raw EMG signals recorded during electrode location shift, effort level change, and 
muscle fatigue. (B) Comparison of power spectral density (PSD) of EMG signals with and without fatigue. The representative PSD was estimated using 
sampled data for elbow flexion. The effort level was set to low. Median frequencies are demonstrated by the vertical dashed lines. The median fre-
quency is 60.4 Hz without muscle fatigue and is 50.8 Hz when the muscle is fatigue. The estimated signal power is 1.42 × 107 mV2 without muscle 
fatigue and is 1.46 × 107 mV2 with muscle fatigue.
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Figure 3 The effects of (A) location shift, (B) varied muscle contraction effort, and (C) muscle fatigue on the classification performance of 
individual features. Each bar indicates the mean value of classification accuracy over 8 subjects. The error bars denote one standard deviation. Stars 
(*) denote statistically significant differences by one-way ANOVA (P <0.05).
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of var, v-Order, logDetect, and emgHist features. The use
of this optimal feature set produced a 72.6% mean accu-
racy across the 8 subjects, with a standard deviation of
21.9%. The difference between the accuracy derived from
the feature set with the highest stability index and the
accuracy derived from the feature set with the lowest
index (56.6% ± 22.5%) was not statistically significant
(one-way ANOVA, p = 0.17). The classification accura-
cies derived from both feature sets demonstrated a large
variation across subjects.

The muscle contraction effort stability was studied
using training data from low-effort muscle contractions
and testing data from high-effort muscle contractions.
The most stable feature set with respect to a changing
level of effort consisted of waveLen, slopeSign, logDetect
and AR features. Using this feature set produced 76.3% ±
8.03% accuracy when averaged across 8 subjects, which
was significantly higher than the accuracy (57.9% ±
17.3%) derived from the worst performing feature set
(one-way ANOVA, p < 0.05).

The most stable feature set with respect to muscle
fatigue consisted of waveLen, slopeSign, AR and Ceps fea-
tures, which resulted in 85.6% ± 4.8% accuracy across
subjects. The feature set with the lowest index value
resulted in 65.1% ± 11.4% accuracy, which was signifi-
cantly lower than the most stable feature set (one-way
ANOVA, p < 0.05).

Lastly, the stability of a feature set with respect to all
studied disturbances was of primary interest in our analy-
sis. The stability index of each feature set was calculated
across the three studied disturbances and all tested sub-
jects. Note that we only considered the effort level change
from low (training) to high (testing). Figure 5 shows the
performance of the three EMG feature sets with the high-
est stability index across the three studied disturbances.

All three feature sets produced similar classification per-
formance; the average classification accuracy over 8 sub-
jects was approximatley 70% under electrode location
shift, 78% under effort level change, and 87% with muscle
fatigue. All three sets shared the features of waveLen, AR,
and Ceps.

Discussion
Practical usage of EMG pattern recognition demands that
performance remains invariant across prolonged periods
of time. This requirement translates into the need for an
understanding of the consequences of inevitable distur-
bances, such as a shift in the location of EMG electrodes,
variations in muscle contraction effort, and muscle
fatigue. It is therefore necessary to identify parameters of
the control signal that are robust with respect to these
disturbances. Our study achieved two goals in addressing
this practical problem: (1) we quantified the performance
of EMG features under three physical and physiological
disturbances and then (2) attempted to improve the
robustness of EMG pattern classification by identifying
robust sets of EMG features. The experiments of this
study were designed with the aim of examining the stabil-
ity of EMG features under general variations in EMG sig-
nals; the results could inform other HMI design for
different specific applications. Note that other HMI sys-
tem may include different number of EMG electrodes,
other type of tested movements, and different classifier,
which may have effects on the absolute system accuracy,
but little on the relative difference in classification accu-
racy between the before and the after signal disturbance
phase. Since the stability of TD features was measured by
the relative change of accuracy after EMG disturbances,
the outcome of this study can benefit general EMG-based
HMI system design by selecting stable EMG features.

A shift in electrode location greatly diminished the
classification accuracies of each individual feature as well
as feature combinations. Choosing the most stable com-
bination of four features with respect to electrode loca-
tion resulted in only 72.6% classification accuracy, which
was significantly lower than the average accuracy (~90%
in Figure 4) when no disturbance was presented. This
result implies that simply selecting proper time-domain
EMG feature sets can offer some improvement in classifi-
cation accuracy, but is inadequate to compensate for the
large shifts (15 mm) on the biceps and triceps tested in
this study. Physically maintaining electrode location is
vital to achieving robustness of EMG pattern classifica-
tion. Further investigation is required to assess the sensi-
tivity of EMG features to electrode shifts in other muscle
areas and shifts smaller than the ones we considered in
our study.

Similar results were observed for the level of effort of
muscle contractions. Using the feature set with the high-

Figure 4 The change in average classification performance with 
the number of applied features in a feature set. Note that the curve 
of effort stability (dotted line) was derived from the classifier trained on 
the low-effort data and tested on the high-effort data.
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est stability index offers improvement in classification
accuracy, but cannot effectively negate the impact from
the effort level change. Interestingly, the magnitude of the
impact due to variability in effort level was considerably
influenced by the training strategy used for our classifier.
Training the classifier on data from low-effort actions or
on data from mixed high- and low-effort actions yielded
much better classification accuracy than training the clas-
sifier on data from high-effort actions only. This finding
suggests that the initial training of a classifier should use
EMG data composed of varied muscle contraction levels
or low effort level in order to enhance the stability of the
EMG classifier with respect to variability in the level of
effort of muscle contractions. The effort level change
from high (training) to low (testing) greatly decreased the
classification performance, compared to the effect of the

effort change from low (training) to high (testing). This
could be because high-effort muscle contraction not only
shifts the mean of the distribution of the studied time-
domain EMG features but also increases the features'
variance within the classifier space.

Our results indicated that muscle fatigue fortunately
had a minor effect on all features except for the EMG his-
togram feature. However, when sets of combined features
were used, selection of an appropriate feature combina-
tion was critical to compensate for the influence of mus-
cle fatigue on classification performance. This is because
the use of the optimal feature set with respect to muscle
fatigue provided a significantly more robust classification
(higher accuracy and less variation) across subjects than
the use of the least stable feature set.

Figure 5 Performance of the three optimal feature sets under three studied disturbances. The three feature sets are (A) mAV, waveLen, AR, and 
Ceps; (B)waveLen, logDetect, AR, and Ceps; (C)waveLen, wAmp, AR, and Ceps. Each graph is divided into three columns. The first column shows classifica-
tion accuracies for each subject with respect to location stability. The second column shows classification accuracies for each subject with respect to 
effort stability. Only the classifier trained on low effort data and tested on high effort data was considered. The third column shows classification ac-
curacies with respect to fatigue stability. Horizontal black lines in each column of all the graphs show the mean classifier performance across all sub-
jects for the stability condition.
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One of our results contradicts the conclusion of previ-
ous work with respect to the utility of the EMG histo-
gram feature for pattern recognition. This previous study
[12] showed that the EMG histogram feature was an
effective feature that maintained the most separability
between classes among all studied EMG features and was
recommended by the authors for myoelectric artificial
arm control. In our analysis, a consistent result was dem-
onstrated only when no disturbance was present in the
testing data. Without any perturbations, the EMG histo-
gram feature produced the highest classification accuracy
and was one of the four best-performing features. How-
ever, when the three studied perturbations were intro-
duced, the EMG histogram feature was the least stable
feature. Including the three disturbances in the testing
data drastically reduced the classification performance of
the EMG histogram feature. Although the EMG histo-
gram feature appeared in the most stable feature set with
respect to electrode location stability, this combination
did not elicit a significant difference in classification
accuracy when compared with the performance of the
least stable feature set. In addition, the EMG histogram
feature was not included in the most stable set with
respect to effort, muscle fatigue, and combined stability
analysis. Therefore, our study indicates that the EMG his-
togram feature is not robust, which challenges its value
for the clinical implementation of EMG pattern recogni-
tion.

One noticeable trend in our results is the robust perfor-
mance of AR and Ceps features. When there was no dis-
turbance in the testing data, both features extracted
sufficient neural information. In the effort, fatigue, and
combined stability analyses, the most stable feature sets
shared AR and/or Ceps features. Nevertheless, AR and
Ceps features are multi-dimensional; inclusion of these
features in a feature set increases the dimensionality of
the feature vectors, which increases the complexity of the
classifier and the computational burden for real-time
prosthesis control. Hence, there is a trade-off between
feature stability and the computational efficiency of clas-
sification. The three feature sets that we identified as
optimal overall (Figure 5) included waveLen, AR, and
Ceps, resulting in a 20-dimension feature per EMG chan-
nel. When the number of EMG channels increases,
dimensionality reduction of the feature vector following
feature extraction might be necessary to improve compu-
tational efficiency. Additionally, the dimensionality we
included for the multi-dimensional features (nine) was
based on reports in the literature [12]. Determining the
optimal dimensionality of features such as Ceps and AR is
the logical next step in this investigation.

There are several limitations in this study. First, we lim-
ited our study to time-domain features. The implementa-

tion of frequency and time-frequency domain features
with other types of classifiers is worth investigating in the
future. Another limitation is that muscle fatigue during
use of EMG-based HMIs is mainly due to repetitive, long-
term muscle use; the muscle fatigue in this study was
intensity-induced (short-term) because of the time con-
straints for conducting the experiments. Additionally,
because the level of muscle fatigue was not controlled
across subjects, some subjects demonstrated very low
level of muscle fatigue and slight changes in EMG signals.

Based on the results of this study, relying only on "opti-
mal" EMG features is not sufficient to overcome the vari-
ations in EMG signals caused by the considered
disturbances. Additional solutions, such as effective
training strategies and adaptive pattern recognition [16],
are promising, although the challenges in making these
potential solutions clinically viable still exist. Continued
engineering effort is demanded towards development of a
practical and robust HMI based on EMG pattern recog-
nition.

Conclusion
In this study we examined the influence of EMG signal
changes elicited by electrode shift, changing amounts of
user effort during muscle contraction, and muscle
fatigue, on various time-domain EMG features and their
resulting classification accuracies. Our results showed
that the use of at least four combined EMG features
enhanced the classifier performance, and multi-dimen-
sional features, such as autoregression coefficients and
cepstrum coefficients, were of greatest value. Although
this study suggests three EMG feature sets that could off-
set the impact of the three studied disturbances, simple
selection of these feature sets for EMG pattern recogni-
tion cannot fully solve the problem. Continuous efforts,
such as developing effective classifier training strategies
or physically fixing the electrode contact locations, are
required to circumvent these undesired disturbances and
minimize their effects on EMG pattern classification.

Appendix: Linear Discriminant Analysis (LDA)
The idea of discriminant analysis is to classify the

observed features to the movement class in which the

posteriori probability P(Cg | ) can be maximized. Cg

(g�[1, G]) denotes the movement classes;  is the feature

vector in one analysis window. The posteriori probability

is the probability of class Cg given the observed feature

vector  and can be expressed as

f

f

f
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where P(Cg) is the priori possibility, P( |Cg) is the like-

lihood, and P( ) is the possibility of observed feature

vector . Therefore, the discriminant analysis-based

classifiers can be mathematically described as

Given movement class Cg, the observed feature vectors

have a multivariate normal (MVN) distribution, i.e.

P( |Cg) ~ MVN(μg, Σg), where μg is the mean vector and

Σg is the covariance matrix of the class Cg. Additionally,

assume that the priori possibility P(Cg) is equivalent for

each movement class, and every class shared a common

covariance, i.e. Σg = Σ. Hence, the maximization of poste-

riori possibility in (13) becomes

is defined as the linear discriminant function.
In the offline training μg and Σ were estimated by fea-

ture vectors calculated from a large amount of training
data and were stored in the flash memory.

where Kg is the number of observations in class Cg;

 is the k observed feature vector in class Cg; Fg is

the feature matrix

; Mg is the mean

matrix  that has the same number

of columns as in Fg. Therefore, the parameters in the lin-

ear discriminant function (15) were known, i.e.

In the testing phase, the observed feature  derived

from each analysis window was fed to the classifier to cal-

culate  in (16) for each movement class and was clas-

sified into a specific class  that satisfied
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